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Abstract. Solutions of Rosen’s equations of gravitation for a homogeneous isotropic 
universe are obtained. The solutions resemble the Lemaitre universe A universal repulsive 
force. introduced in general relativity by a positive cosmological constant. appears here 
directly as a consequence of the (unmodified) field equations. 

1. Introduction 

Recently Rosen (1974) presented a bimetric theory of gravitation. As the theory agrees 
with observations (and general relativity) for weak gravitational fields, its viability has 
to be examined in situations where the weak-field approximation does not hold. 

The following discussion shows that the cosmological solutions of the theory are 
compatible with the basic observational data. They also point to the existence of a 
repulsive force as a property of matter, in contrast to  general relativity, where the 
repulsive force is introduced by means of a positive cosmological constant, as in the 
Lemaitre universe. Lemaitre models, which provide more time than Friedmann models 
for the formation of galaxies, have also been considered as an explanation of the cut-off 
of quasar red shifts at about the value of 2 (Shklovsky 1967, Brecher and Silk 1969, 
Burbidge and Burbidge 1971). At the same time, models with an arbitrarily chosen, 
non-vanishing cosmological constant are often treated with a certain reluctance (Ellis 
1971, Burbidge and Burbidge 1971). 

2. Solution of Rosen’s field equations 

Rosen’s field equations (with the gravitational constant and the velocity of light both 
equal to unity) are 

N , , - i g , , N  = - ~ x K T , ,  (1) 

(2  ) 
the vertical stroke denotes a covariant derivative with respect to a flat-space metric 
tensor y,,,, j@ is the inverse of y r v  and K = (G/I‘)1’2, G and being determinants of g,,, 
and y P v  respectively. 

Let us assume a homogeneous isotropic universe filled with a perfect fluid, so that in 
co-moving coordinates Tg = p, T i  = T: = T i  = - p ,  and the metric tensors in the 

where gPv is the Riemannian metric tensor, qy is the energy-momentum tensor and 
N &  = +(g’Ag, ) ill/’: 

A l l l a  I P ,  
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spherical polar coordinates ( t ,  r, 8,@) = (xo, x6, x2, x3) given by 

y r v  dx' dx' = dt2 - do2, 

gPv dx' dx' = exp(2cp) dt2 -exp(2IC/) do2. 

doz = dr2 + r2  de2 + r2  sin2 8 d o z  
(3) 

The field equations (1) give 

where the subscripts t and r denote the respective partial derivatives. 
The field equations can be solved analytically for a y-law equation of state p = (y - l)p, 

where y is a constant (1 < y < 2). The vanishing covariant divergence (with respect to 
gPv) of Tpv implies cp, = 0 (since p ,  = 0), and 

P = L exp( - 3Y$) 

where L is independent of t. Furthermore, p ,  = cp, = 0 implies L, = $, = 0, so that 
L is a (positive) constant and both cp and $ are independent of r. The universe is infinite 
and the t = constant space sections have zero curvature. 

One sees at once from (4b) that p enhances expansion, while p has the opposite 
effect. Indeed, if we rewrite (4b) in terms of the proper time T defined by d t2  = dt2 exp(2cp) 
and compare it with Raychaudhuri's equation for the volume expansion (eg Ellis 1971) 
3$ (= 3 d#/dz), we see that the term (p - p )  exp(3# - cp) corresponds to the mass density in 
Newtonian cosmology, or p + 3p in general relativity. 

Let us choose the time origin at the maximum of c = cp - 3(y - 1)$ and define the time 
unit by 2nLA exp(c(0)) = 1, where A = - 3y2 + 12y - 8. The solution of (4) is given by 

cp = cp(0) + C(l t  -In cosh t )  

IC/ = #(O)+ C'(l't + In cosh t )  

where 1' is an arbitrary constant and 

1 = 3A'(y- 1)(2-~)(37-2)-', 

C = 2(3y - 2)/A, C' = 2(2 - ?) /A.  

We can group all terminal states (It1 + 00) into four classes, depending on the values 
of 1' and A : 

SI : p = 0, 5 finite 

S2 : p infinite, T finite 

S3: p = 0, T infinite 

S4 : p finite, T finite. 

The following seven model processes are allowed : 

I. A 2 1 : S2 -, S3 (expansion) 
11. 1 < - 1 : S3 -, S2 (contraction); 
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for - 1  < 3, < 1 :  

111. A’ > 1 : S2 -, S 1  (expansion) 
IV. I’ = 1 : S4 -+ S1 (expansion) 
V. - 1 < A’ < 1 : S1 -+ finite p > 0 -+ S1 (contraction followed by an 

expansion) 
VI. I’ = - 1 : S1 -+ S4 (contraction) 

VII. I‘ < - 1 : S1 -+ S2 (contraction). 

3. Discussion 

If we assume the pressure to be exactly zero (y = 1); only models 111 to VI1 are available 
(A = 0). The same holds for y = 2. 

Since the real universe is expanding, we have a choice of cosmological models I, 111, 
IV and V. 

Model I starts with a big bang and expands for an unlimited time. The deceleration 
parameter 4 = -($ + $2)$-2 turns out to be bounded as follows : for y very close to 1 ,  

3 - 1  < q ( - a 3 )  < -$, -# < q(0) < - 1, -7 < q(a3) < -1, 

where the argument is t ,  and for y = 2, 

The observational limits (Ellis 1971) Iq(present time)l < 5 are satisfied. Values of the 
Hubble constant $ and the mass density p at present can be made to agree with the 
observed values by adjusting the remaining free parameters L, $(O), cp(0) and also 
?(present). The same holds for models 111 to V, but here 141 < 5 only for a limited range 
of T .  

Models 111 to V all have S1 ( p  = 0 at finite T )  as a final state and are thus geodesically 
incomplete in the future. Their qualitative properties can be illustrated by the solution 
for y = l,cp(O) = 0:  

S1 as a final state is physically possible only for a perfectly homogeneous fluid, or for 
a fluid consisting of structureless particles, where the concept of time loses sense for 
p -, 0. If we assume that material bodies of some structure will persist in the future, the 
approximations of perfect homogeneity and the y-law equation of state will ultimately 
fail as p -, 0 ;  therefore S1 has to be rejected as a final state of the universe. 

This leaves us with model I as the only possibly realistic one from those considered. 
The y-law equation of state with a constant y is, however, a poor approximation 

when applied to the whole range of matter densities. It cannot be excluded that the 
field equations combined with a more realistic equation of state would admit other 
models, eg of type V : S1 -, finite p > 0 -+ S3 (S1 seems admissible as an initial state). 
Such an analysis would probably require numerical solution and is beyond the scope 
of this paper. 
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